SmartCell Reconfigurable Architecture for Low-Power Stream Processing

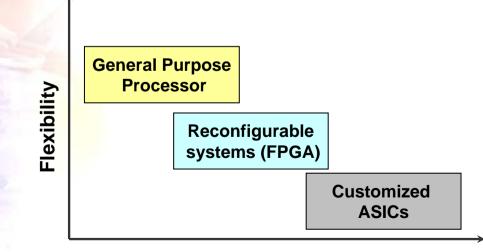
Cao Liang and *Xinming Huang* Embedded Computing Lab Worcester Polytechnic Institute http://computing.wpi.edu

MAPLD Conference September 15-18, 2008 Annapolis, MD

Outline

- Introduction and Motivation
- SmartCell Architecture
- SmartCell Prototype with 64 PEs
- Benchmark Applications and Performance
- Conclusions

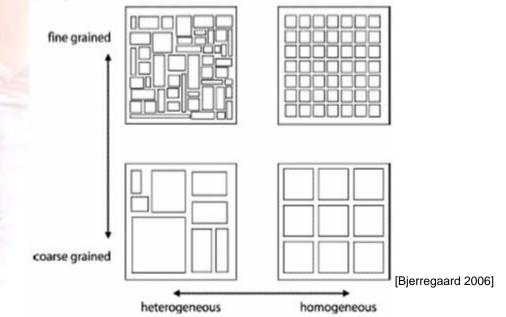
Challenges


- Major driving force in embedded computing
 - Multimedia signal and image processing
 - Wireless communications
 - Military and space applications
- Design challenges:
 - Low power (power efficiency)
 - High performance
 - Flexibility (Programmability or reconfigurability)

Xinming Huang

Existing Computing Platforms

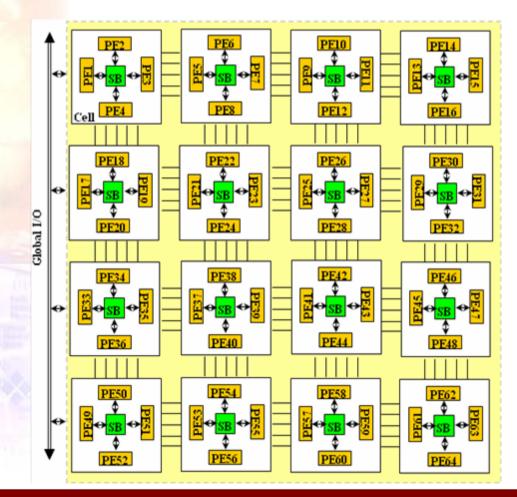
- General purpose processors (GPP)
- Application specific integrated circuit (ASIC)
- Reconfigurable architecture
 - Dominated by Field Programmable Gate Array (FPGA)
- New architectures: CellBE, GPU



Performance, Power Efficiency

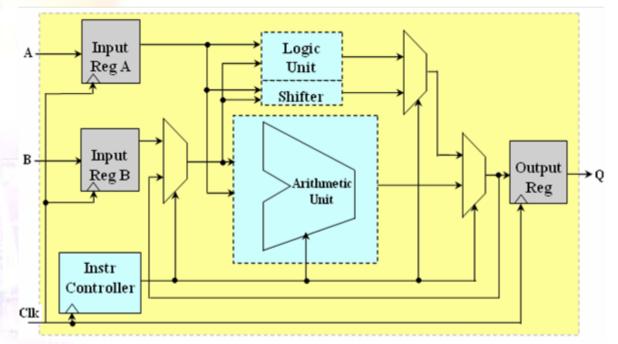
Xinming Huang

Coarse-Grained Reconfigurable Architecture (CGRA)

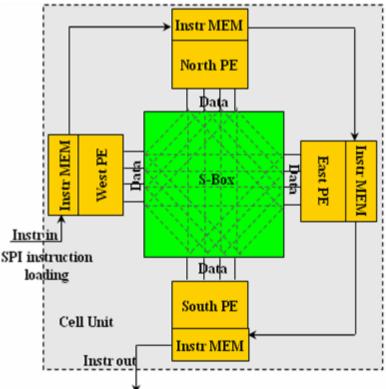

- Motivations of the SmartCell architecture
 - Coarse-grained computing operators
 - Reconfigurable interconnection
 - Domain specific, e.g. stream processing
- Bridging the gap between FPGA and ASIC

Xinming Huang

Overview of SmartCell Architecture

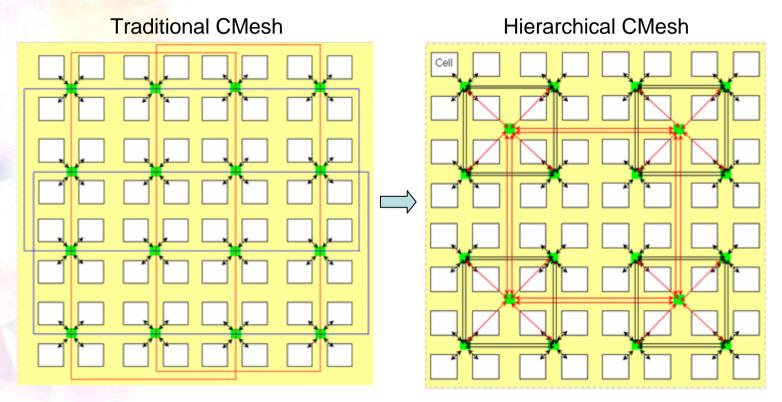

Computing units are tiled in a 2D structure

Xinming Huang


Design of Processor Element

- Processor Element (PE)
 - 16-bit input, 36-bit output
 - Logic, Shift, and Arithmetic operations

Design of Cell Unit

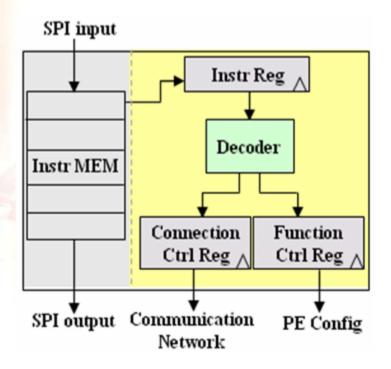

- Include 4 PEs to form a quad structure
- Fully connected cross-bar (S_Box) for date exchange
- Serial peripheral interface (SPI) for instruction configuration

Xinming Huang

On-chip Interconnection Design

Modified CMesh On-chip Network

Control Logic Design

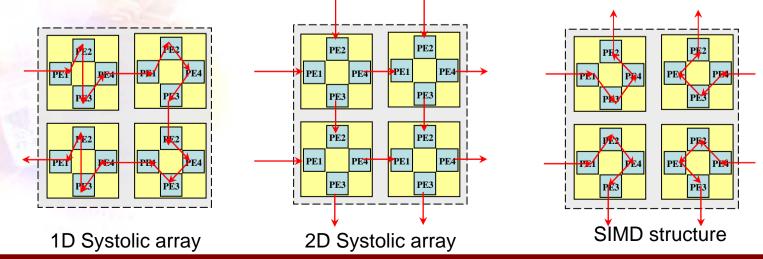

- Four types of control signals
 - Program counter control
 - Datapath/delay control
 - Operation control
 - Network-on-Chip control

 Format of the instruction code (64bit/instruct)

64 bits/instruction code									
# of bits	9	20	7	10	11	7			
Format	PC control	Datapath control	I/O delay	Operation control	NoC control	RESV			

Configuration Structure

System configuration



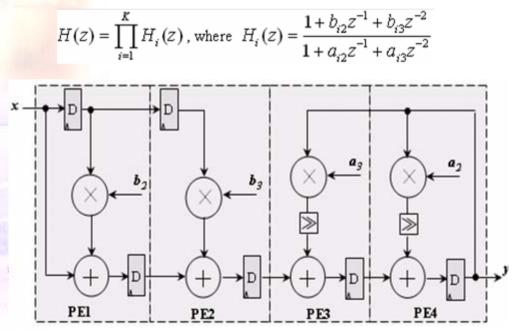
Prototype Chip Design

- Implementation of a seedling SmartCell system with 16 cell units in a 4 by 4 mesh structure, with a total of 64 PEs
 - RTL level design and simulation
 - FPGA prototyping
 - Standard cell ASIC implementation with TSMC .13
 µ m technology
 - Total area is about 8.2 mm²
 - Runs up to 107 MHz
 - Configuration time is within 12 µ s

SmartCell Features

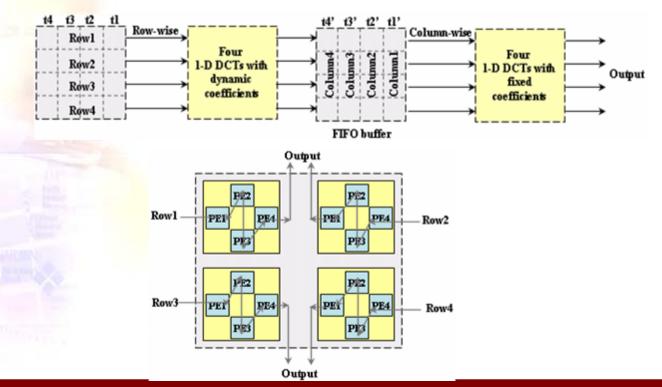
- A combination of the following features makes SmartCell a unique approach in CGRA families
 - Dynamic reconfiguration
 - Deep pipeline and parallelism
 - Hardware virtualization
 - Explicit synchronization
 - Unique system topology

Application Domain and Benchmarks


Application Domain	Test Benches				
Signal processing	64-tap FIR 64-tap IIR				
Multimedia and image processing	32-point FFT 8*8 2D-DCT, 8 by 8 Motion Estimation (ME) in 24 by 24 searching area				
Scientific computing	128 by 128 Matrix Multiplication (MMM), 64 th -order Polynomial Evaluation (PoE) RC5 Data Encryption				

Benchmark Mapping

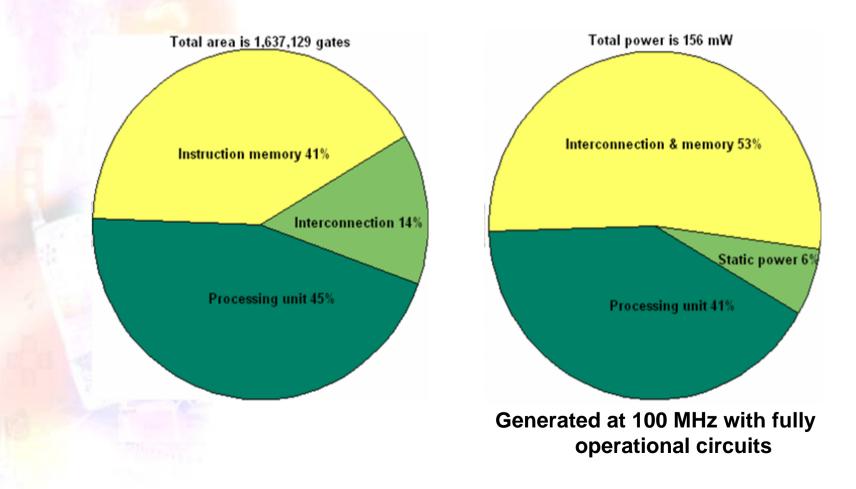
Infinite Impulse Response (IIR) filter


$$y(n) = \sum_{i=1}^{N} a_i y(n-i) + \sum_{i=0}^{M} b_i x(n-i)$$

 Biquad cascaded-IIR structure on a single Cell

Benchmark Mapping (cont') = 2D Discrete Cosine Transform (2D DCT) $X_{i,j} = a_i b_j \sum_{k=0}^{N-1} \sum_{k=0}^{N-1} x_{k,j} \cos\left[\frac{\pi}{N}(k+1/2)i\right] \cos\left[\frac{\pi}{N}(l+1/2)j\right], \text{ where } 0 \le i, j < N$

Decomposed into two 1D DCTs


Xinming Huang

Experimental Setup

- Evaluation Metrics
 - Area & Timing
 - Power consumption
 - Throughput and power efficiency
 - Comparing with RaPiD, Altera's Stratix II FPGA and ASIC

System dimension	4 by 4			
Design tools	ModelSim, Synopsys			
Library	TSMC .13 µ m process			
Voltage	1 V			
Simulation freq.	100 MHz			

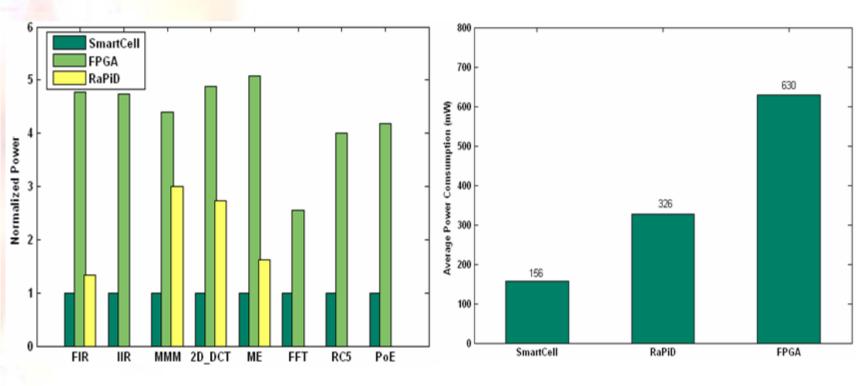
Area and Power Consumption

Power Consumption and Efficiency

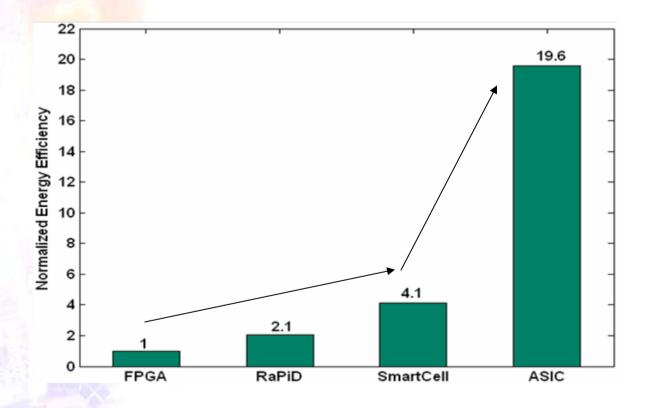
- On average 156 mW power consumption @ 100 MHz
- 31 GOPS/W energy efficiency
 - only arithmetic & logic operations, excluding I/O power

6 . A.	FIR	IIR	2D-DCT	RC5	MMM	FFT	PoE	ME
P _{Dyn} <mw></mw>	144	181	153	132	135	161	142	137
P _{Core} <mw></mw>	152	189	161	140	143	169	150	145
E _{Eff} <gops w=""></gops>	42.1	33.9	39.8	45.7	11.2	18.9	42.7	11.0

Compare with RaPid, FPGA, and ASIC


Power and system throughput comparison

 Power consumption of RaPiD has been scaled down to the same process technology of SmartCell system


	-	FIR	IIR	MMM	2D DCT	ME	FFT	PoE
SmartCell	Power <mw></mw>	152	189	143	161	145	169	150
	Throu.*	100	100	763	1.56	865	58	100
		MS/s	MS/s	Matrices/s	Mblocks/s	Kblocks/s	MS/s	MS/s
RaPiD [26]	Power <mw></mw>	203	-	428	439	235	-	-
	Throu.	100 MS/s	-	763 Matrices/s	1.56 Mblocks/s	865 Kblocks/s	-	-
FPGA	Power <mw></mw>	725	896	445	787	573	431	628
	Throu.	100	100	763	1.56	865	100	100
		MS/s	MS/s	Matrices/s	Mblocks/s	Kblocks/s	MS/s	MS/s
ASIC	Power <mw></mw>	31	45	9	55	12	33	55
	Throu.	100	100	763	1.56	865	58	100
		MS/s	MS/s	Matrices/s	Mblocks/s	Kblocks/s	MS/s	MS/s

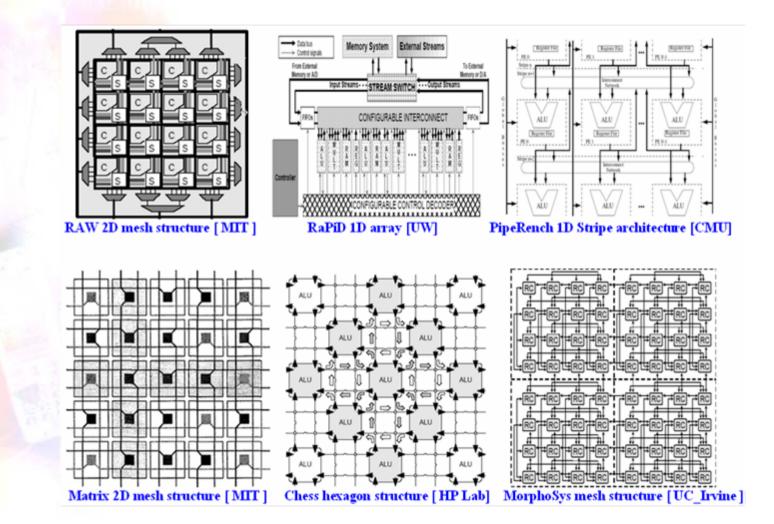
Compare with Rapid and FPGA

- 52% average power reduction compared with RaPiD
- 75% average power reduction compared with FPGA

Power Efficiency Comparison

* Compare to 90nm Stratix-II FPGAs

Xinming Huang

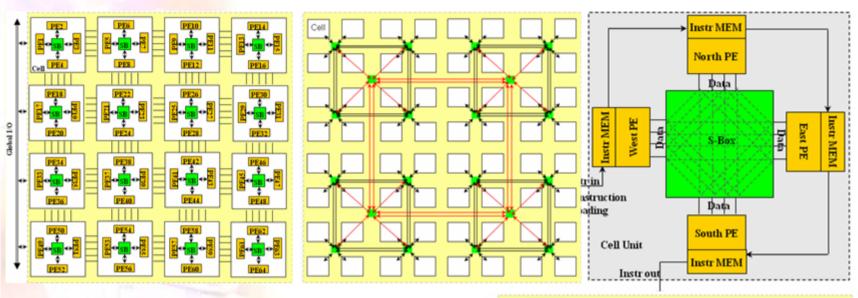

Conclusions

- An interesting CGRA architecture is proposed and developed – namely SmartCell
- The architecture is reconfigurable and can be targeted for different computing systems
- A prototype design with 64 PEs shows both throughput and power efficiency in benchmarks of data streaming applications
- SmartCell may have the potential to bridge the gap between high-power FPGAs and inflexible ASICs

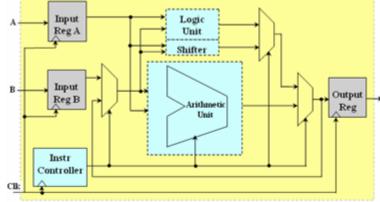
The following are backup slides

Xinming Huang

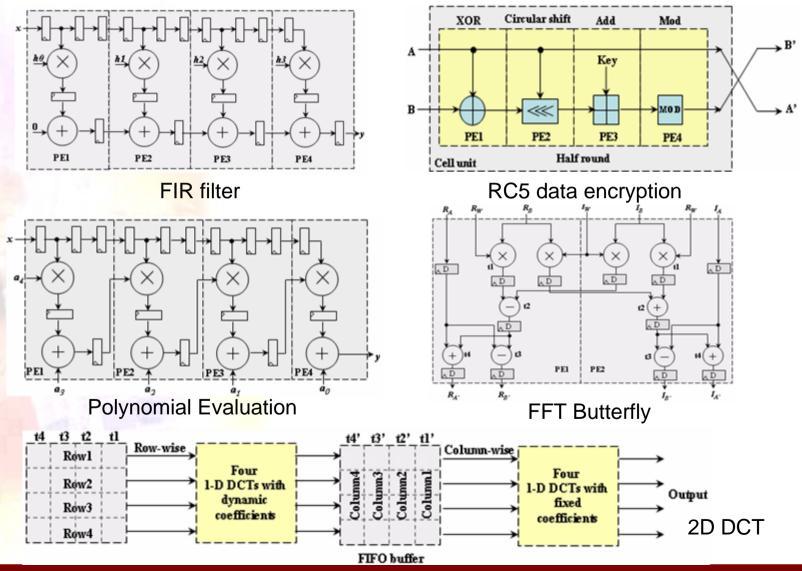
Existing CGRAs


Xinming Huang

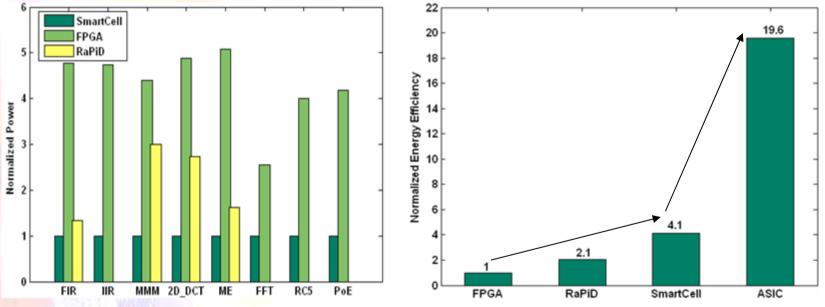
Characteristic Comparison


System	Archit.	Reconfig.	Application	Connection	Homogeneity	Parallel & Pipeline
RAW	MIMD	Static	Irregular or general	2D Mesh	Homogeneous	Spatial & Temporal
RaPiD	SIMD	Mixed	Systolic or pipeline	1D array	Heterogeneous	Temporal
PipeRench		Dynamic	Stream-based	1D array	Homogeneous	Spatial & Temporal
MATRIX	VLIW SIMD MIMD	Dynamic	Systolic	Layered Structure	Homogeneous	-
CHESS		Static	Multimedia	Hexagon mesh	Homogeneous	-
MorphoSys	SIMD	Dynamic	Data-parallel	2D mesh	Homogeneous	Spatial
SmartCell	SIMD MIMD Systolic	Mixed	Multimedia or Systolic	Layered Structure	Homogeneous	Spatial & Temporal

Characteristics of the compared CGRAs


SmartCell: Tiled Architecture, Processor Design and Interconnect

- Many cells are titled in 2D layout
- Each cell has 4 PEs (N,W,S,E)
- Simplified processor with mem
- A crossbar within the cell; onchip interconnect uses CMesh


Features and Application Domain

Xinming Huang

System Design and Performance

- Prototype chip design: 4x4 cells (64 PEs), .13 TSMC, 8.2mm², 1V, about 156mW @100MHz
- Benchmark with RaPiD, Stratix-II (90nm), and ASIC

Acknowledgement:

- Dr. Michael Fritz, DARPA/MTO YFA Program
- Cao Liang, WPI graduate assistant, now with AMD